Statistical Approach for Offline Handwritten Signature Verification
نویسندگان
چکیده
منابع مشابه
Statistical Approach for Offline Handwritten Signature Verification
Signatures were considered an important tool for authenticating the identity of human beings. So, signature verification was one of the biggest uses for that. We proposed an algorithmic approach for the verification of handwritten signatures by applying some statistical methods. The research work was based on the collection of set of signatures from which an average signature was obtained based...
متن کاملUse of the Shearlet Transform and Transfer Learning in Offline Handwritten Signature Verification and Recognition
Despite the growing growth of technology, handwritten signature has been selected as the first option between biometrics by users. In this paper, a new methodology for offline handwritten signature verification and recognition based on the Shearlet transform and transfer learning is proposed. Since, a large percentage of handwritten signatures are composed of curves and the performance of a sig...
متن کاملOffline handwritten signature verification - Literature review
The area of Handwritten Signature Verification has been broadly researched in the last decades and still remains as an open research problem. This report focuses on offline signature verification, characterized by the usage of static (scanned) images of signatures, where the objective is to discriminate if a given signature is genuine (produced by the claimed individual), or a forgery (produced...
متن کاملOffline Handwritten Signature Recognition
Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capability to reliably distinguish between an authorized person and an imposter. Signature verification systems can be categorized as offline (static) and online (dynamic). This paper presents a neural network based recognition of offline handwritten signatures system t...
متن کاملHandwritten Signature Verification Using Complementary Statistical Models
This paper describes a system for performing handwritten signature verification using complementary statistical models. The system analyses both the static features of a signature (e.g., shape, slant, size), and its dynamic features (e.g., velocity, pen-tip pressure, timing) to form a judgment about the signer’s identity. This approach’s novelty lies in combining output from existing Neural Net...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer Science
سال: 2008
ISSN: 1549-3636
DOI: 10.3844/jcssp.2008.181.185